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Abstract
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Measurement of human daily physical activity. Obes Res.
2003;11:33–40.
Objectives: To validate a new device, Intelligent Device for
Energy Expenditure and Activity (IDEEA), for the mea-
surement of duration, frequency, and intensity of various
types of human physical activity (PA).
Research Methods and Procedures: The ability of IDEEA
to identify and quantify 32 types of PA, including the most
common daily exercise and nonexercise PA, was tested in
76 subjects: Subjects included males (N � 33) and females
(N � 43) ranging in age from 13 to 72 years with a mean
body mass index (BMI) of 24.7 kg/m2 (range: 18.4 to 41.0)
[43 females: 13 to 72 years old and BMI 18.4 to �41.0
kg/m2 (mean � 24.7 kg/m2); 33 males: 15 to �72 years old
and BMI 21.0 to �38.4 kg/m2 (mean � 25.9 kg/m2)].
Postures, limb movements, and jumping were tested using a
timed protocol of specific activities. Walking and running
were tested using a 60-meter track, on which subjects
walked and ran at 6 self-selected speeds. Stair climbing and
descending were tested by timing subjects who climbed and
descended a flight of stairs at two different speeds.
Results: Correct identification rates averaged 98.9% for
posture and limb movement type and 98.5% for gait type.
Pooled correlation between predicted and actual speeds of
walking and running was high (r � 0.986, p � 0.0001).
Discussion: IDEEA accurately measured duration, fre-
quency, type, and intensity of a variety of daily PAs.

Key words: physical activity, exercise, posture, nonex-
ercise activity, gait

Introduction
Regular physical activity (PA),1 fitness, and exercise are

critically important for the health and well being of people
of all ages (1). However, measuring PA levels is a formi-
dable task. As Montoye et al. pointed out: “While most
experts agree that remaining active throughout life is im-
portant for continued health and fitness, measuring activity
levels outside of the laboratory is difficult” (2). Measure-
ment techniques have evolved considerably over the years
(3,4), creating a shifting pattern of strength and weakness in
the evidence supporting the assertion that PA improves
health (3,5). The complexity is heightened by the different
health implications of measuring activity, gauging intensity,
and assessing fitness (3). Particularly challenging have been
the attempts to develop accurate, valid, and cost-effective
techniques to quantify PA under free living conditions
(6,7,8). Numerous methods have been used to measure
short- and long-term PAs. They vary greatly in their appli-
cability (6,9,10). A pedometer is a small, simple, and non-
invasive mechanical movement counter that is clipped to a
belt at the waist or worn on the ankle (11,12). The main
shortcoming of pedometers is that they are not sensitive to
gait differences such as stride length, which vary signifi-
cantly among activities from person to person. Accelerom-
eters are currently used by several groups for PA monitor-
ing. Level walking showed the highest correlation with the
waist-worn tri-axial accelerometers after individual calibra-
tion (r � 0.99) (13). This indicates the excellent reproduc-
ibility of the device in monitoring human movement as
long as the type of activity is known for that person. The
advantages of this class of devices include small size, non-
invasiveness, low cost, and minimal intrusion to normal
subject movements during daily activities. The duration,
frequency, and, to some extent, intensity are also measur-
able. The major problem is that the device detects only the
moving or shaking of the sensor that is attached to part of
the body. It is not “smart” enough to know what type of PA
is being performed. The single sensor location makes it
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extremely difficult, if not impossible, to detect movement
coordination of the limbs or determine postures and gaits.

Similar devices such as wrist/ankle watches and actom-
eters also exist. Because most of these devices use switches
as sensors, their “on” or “off ” categories of information
can only give qualitative type of results with limited infor-
mation on the intensities of PA. Electronic load transducers
and foot-contact monitors have been reported, which could
be inserted into the heels of shoes to monitor walking
activity and loads held, lifted, or carried (14). However,
because of the technical and practical limitations of these
measuring techniques, these devices (i.e., in-shoe step
counters, foot-contact time monitors) have not been used
widely in epidemiological research, and little information is
currently available on their accuracy in assessing habitual
PA status.

Because of the complex nature of PA and problems
inherent to its accurate measurement (7), none of the more
than 30 presently reported methods are capable of accu-
rately identifying type, duration, frequency, and intensity of
daily PA. Recently, a new microcomputer-based portable
PA measurement device, Intelligent Device for Energy Ex-
penditure and Activity (IDEEA) (MiniSun, Fresno, CA),
which was designed to accomplish the complex measure-
ments listed above, has become available. We report results
of extensive testing of IDEEA for assessment of a wide
variety of PA by measuring duration, frequency, and inten-
sity. Specifically, tests were conducted for the following:
identification of postures, limb movements, gaits, and speed
estimation of walking and running.

Research Methods and Procedures
PA Classification

Functionally, human PA, such as writing a letter or
watching television, can be very complicated. It can, how-
ever, be categorized into much simpler types when energy
requirement is considered. Thus, based on our experience
and the daily activities identified and suggested by other
investigators (15–19), we included four general kinds of
activity in our test: postures, gaits, limb movements, and
transitions (Figure 1). The five primary postures—sitting,
standing, reclining, leaning, and lying down—are relatively
static. Each primary posture was further defined by a num-
ber of secondary postures, for a total of 22 secondary
postures. There are five gaits that are dynamic: walking,
running, climbing stairs, descending stairs, and jumping.
The limb-movement category includes five activities in-
volving movement of the feet and legs while sitting or
standing. In total, we classified 32 types of PA from pos-
tures, gaits, and limb movements. A final category, transi-
tions, includes periods of movements from one type of PA
to another, which is very important for fidgeting studies.

All of the PAs shown in Figure 1 can be detected by the
IDEEA system except for cycling and jumping on one foot.

The activity classification in this study was focused on the
daily activities that are performed by the majority of the
population. These cover the most common daily PAs in-
cluding both exercise and nonexercise.

Subjects
We recruited subjects through the hospital and neighbor-

hood community by posting flyers and making phone calls.
The subjects received a small monetary compensation for
their participation. A total of 76 subjects (33 males and 43
females) were included in the study. Among these, 69
participated in the gait testing, whereas 68 participated in
the posture testing. Mean values for the characteristics of all
76 subjects are shown in Table 1. All subjects appeared to
be free of any impairment of the loco-motor system.

Device
A photo of the IDEEA is shown in Figure 2A. It consists

of five small sensors (each 16 � 14 � 4 mm, approximately
the size of a small postage stamp) that are attached to the
body and a small 200-gram data collection device (micro-
computer) that can be worn on the belt. The output signals
from the sensors travel through thin, flexible cables (OD �
2 mm) to the microcomputer. A fast microprocessor (33
MHz, 32-bit ARM processor; ARM, Cambridge, United
Kingdom) is used for the intensive computational require-
ments. Analyses include identification of activity type, gait
analysis during walking and running, and calculation of
duration, frequency, and intensity of activity/exercise. A
new memory technique called “flash memory” enables re-
cording of the processed data and other vital information
with high reliability during activities in free-living condi-
tions. The recorded data will not be lost in the event of
accidents, such as battery failure or inappropriate opera-
tions. If abnormal conditions should occur, a beeper would
send various alarm signals through beeping frequencies and
patterns to alert the wearer. The communication between the
IDEEA and the main database such as a desktop computer
is through a standard serial communication port (RS-232;
240,000 bytes per second) at high baud rate. This allows
data to be downloaded in the laboratory by a home com-
puter or through the Internet.

The basic working principle of an IDEEA is the follow-
ing: the IDEEA system monitors body and limb motions
constantly through five sensors attached to the chest, thighs,
and feet. The different combinations of signals from those
five sensors represent different PAs, which were coded as
32 different numbers for the 32 activities in this study.

These motion signals are first preprocessed by signal
conditioners. The output electric signals representing mo-
tion and speed are then fed at high rate through a cable to
the microcomputer data acquisition unit. The multi-channel
raw data are temporarily stored in the random access mem-
ory. They are then further processed by the microprocessor
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and stored in flash memory together with specific events
and the subject’s characteristics (age, gender, body weight,
height, and estimated fitness level). These data are down-
loaded to a computer for analysis at the end of each test.
IDEEA can operate for up to 48 hours and can store

�60,000,000 data units. Additional memory is needed if it
is necessary to store all the raw data for a longer period.

The outputs of IDEEA provide the specific type (e.g.,
sitting, climbing stairs, jumping), duration, and estimated
intensity, if applicable (such as the speed of walking and
running) of daily activities on second-by-second basis
(ranging from milliseconds to hours).

Device Placement and Speed Measurement Setup
For the tests, the five sensors were attached to the skin by

hypoallergenic medical tape as described below. Although
the exact location has not been proven to be critical, we
placed sensors in the following locations: two sensors were
placed at the anterior sides of the upper legs, halfway
between the hip and knee; the two foot sensors were placed
on the inferior side of the feet, under the arch to avoid
interference with activities such as walking, running, and
jumping; the fifth sensor was attached to the sternum, just
below the sternal angle, vertical to the x axis. If necessary,
a small wedge was inserted underneath the sensor to correct

Figure 1: Classification of PA. Daily physical activities are characterized as five basic gaits (biking, jump on left, and jump on right foot
were not evaluated in this study), five primary postures, and five limb movements and transitions. Each primary posture is further defined
by a number of secondary postures, for a total of 22 secondary postures.

Table 1. Subject characteristics

Characteristics

N � 76
(n � 33 males, n � 43 females)

Mean � SD Range

Age (years) 36.3 � 14.9 13.0 to 72.0
Body weight (kg) 72.4 � 14.8 44.6 to 118.0
Height (cm) 170.9 � 9.4 152.4 to 188.0
BMI (kg/m2) 24.7 � 4.4 18.4 to 41.0
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for difference in anatomic inclinations, which are especially
apparent for obese subjects. For the calibration of IDEEA,
the subject was asked to sit in an upright position with feet
and thighs parallel to the floor and the upper body in a
vertical position. Calibration took 5 seconds and a maximal
deviation of 15 degrees in each direction was allowed.
No individual calibration such as the activity type or speed
of walking or running is necessary. Figure 2B shows a
drawing that demonstrates the position of the sensors on a
subject.

During the walking and running tests, a light, carried in a
backpack strapped securely to the subject, signaled a series
of light sensors installed evenly (5-meter intervals) along
the track ceiling, leaving the initial and final 5-meter dis-
tance for speed transition. Signals from the light sensors,
recorded by a cable to a computer, allowed accurate calcu-
lation of time of walking and running between sensors; thus,
the walking and running speeds were precisely determined.

Protocol
The study consisted of two protocols: a posture and

limb movement protocol and a gait protocol. The ability

of IDEEA to identify the 5 primary postures, 22 second-
ary postures, and 5 limb movements was tested by those
timed protocols. One of the investigators demonstrated
each posture to the subject before the test. After place-
ment and calibration of the device during sitting, the
subject was asked to assume each of the prescribed
postures for 10 seconds. The investigator, using a stop-
watch accurate to 1/100th of a second, then timed the
activities and indicated when to change to the next ac-
tivity. A second investigator simultaneously announced
and demonstrated each activity. Each subject was tested
by two different sequences of the 22 postures and 5 limb
movements.

For gait testing, subjects walked and ran on a 60-meter
track at slow, normal, and fast speeds at rates determined by
the subjects. After walking and running on the track, sub-
jects were instructed to climb and descend a flight of stairs
three times (total, 48 steps) at speeds with which they felt
comfortable (normal, fast, then normal again).

The protocol was approved by the Institutional Review
Board at St. Luke’s–Roosevelt Hospital Center, and sub-
jects signed written consent to participate. The consent

Figure 2: (A) The picture of the device and sensors; (B) the drawing that demonstrates the position of the sensors on a subject. A total of
five sensors are placed: one on the chest, two on the frontal part of thighs, and two on the feet. Very thin and flexible wires (outer diameter,
2 mm) connect sensors and recorder.
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forms for subjects under age of 18 were signed by their
parents, and those subjects were accompanied by their par-
ents during the test.

Data Analysis
After each test, the data were downloaded and processed

on a personal computer, generating a table containing six
columns of data for each activity: time, type of PA, speed,
power, energy expenditure (EE), and duration of the activ-
ity, respectively. Each row represents the specific time-
point at which one type of PA changed to another.

The protocol required subjects to assume each posture or
limb movement for 10 seconds. Transition time between
postures required no more than 4 seconds. We therefore
discarded the first 4 seconds to ensure completion for even
the most complex transition by the slowest person and, after
discarding 1 additional second, used the remaining 5 sec-
onds to estimate the accuracy of the device, which was
determined by observing and recording activities by two
researchers during tests and comparing results between the
device outputs and recordings.

For each subject, we calculated an average correct iden-
tification score for each of the 32 types of PA (22 types of
postures, 5 types of gaits, and 5 types of limb movements
without locomotion). The intra-class correlation was used to
compare accuracy for all PA classified in this study with
subject characteristics [age, gender, and body mass index
(BMI)]. Thus, accuracy � (time of correct activity identi-
fication)/(maximal possible time for correct activity detec-
tion). A pooled correlation between actual speed and pre-
dicted speed was calculated using Fisher’s Z transformation.
Basic descriptive statistics by overall, gender, and BMI
were calculated (Tables 2 and 3).

Results
Posture and Limb Movement Identification

Of the 76 subjects, 68 participated in the tests for posture
and limb-movement identification. The overall average of
correct identification rate of all postures for 68 subjects was
99% (range, 90.3% to 100.0%) (Table 2). After grouping
the secondary postures by the corresponding primary pos-
tures, we found “reclining” to be the most difficult group to
identify (96.2%), whereas “lying down,” “sitting,” “stand-
ing,” and “leaning” were all accurate to �99% (range,
99.2% to �99.5%). Limb movement without locomotion
was correctly recognized at an average rate of 99.2%
(97.8% to �100%). Measurement accuracy of the system
was not significantly affected by age (p � 0.511), gender
(p � 0.372), or BMI (p � 0.078).

Gait Identification
Among 76 subjects, 69 participated in the tests for gait

identification and speed estimation of walking (slow, nor-

mal, and fast) and running (slow, normal, and fast). Gaits
were correctly detected at an average rate of 98.5% (96.6%
to 99.7%) (Table 3). Relatively lower rates of correct clas-
sification were found for jumping (96.6%), stair-gaits
(98.24%), and running (98.99%), whereas walking was de-
tected at a rate of 99.7%. There was no statistically signif-
icant effect of age (p � 0.135) or gender (p � 0.309).
However, there was a significant effect of BMI (p � 0.045).
Further examination found that BMI was only negatively
correlated with running detection rate (r � �0.25, p �
0.031), but not with walking (p � 0.111), descending stairs
(p � 0.238), or ascending stairs (p � 0.072). However, the
correlation between BMI and running gait detection rate
was very low (�0.25), and the p value (p � 0.031) was
almost in the boundary (p � 0.05) for statistical signifi-
cance. Actual correct running gait detection rates were
�99% for both those above and below a BMI of 25 kg/m2

(Table 3). This means that the measurement accuracy of the
system, in fact, was not greatly affected by BMI.

Speed Prediction of Walking and Running
The average accuracy of the speed estimation of walking

and running by IDEEA for 69 subjects is 100.0 � 3.6%
(mean � SD), ranging from 91.6% to 108.0%. The results
show the close match between predicted speed and actual
speed. The pooled correlation by using Fisher’s Z transfor-
mation between actual speed and predicted speed for 69
subjects was found to be 0.986 (individually ranging from
0.935 to 0.995; p � 0.0001).

Of total 15,676 steps evaluated, average actual speed was
4.089 � 2.013 miles per hour (mph) (mean � SD), whereas
average IDEEA-predicted speed was 4.093 � 1.976 mph
(mean � SD). Overall average error was 0.004 � 0.324
mph, whereas overall average absolute error was 0.223 �
0.236 mph.

Discussion
In our standardized protocol, we found an overall rate of

98.7% for the correct identification of 32 types of PA. These
results are satisfying, especially in view of the short time
period (5 seconds) that was used for the analysis of the
“posture” part. We are aware that, by limiting the maximal
possible time for correct detection, we decreased the esti-
mated rate of accuracy; however, we did so to perform a
highly standardized data analysis. In addition to the overall
high rate of PA identification, IDEEA was able to correctly
determine duration and intensity of walking or running
(correlation factor for speed � 0.986; p � 0.0001). Some
results of our study, however, require closer examination. A
greater number of errors were recorded among leg positions
within the primary posture “recline” than for other postures.
One difficulty for correct identification of this posture might
be the great anatomical differences among our heteroge-
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Table 2. Identification accuracy of postures and limb movements

Primary/secondary

Accuracy

Overall
(%)

Male
(%)

Female
(%)

BMI < 25 kg/m2

(%)
BMI > 25 kg/m2

(%)

Sitting
Upright (normal) 99.7 100.0 99.5 100.0 99.2
Left leg over right leg 99.2 98.2 100.0 100.0 97.9
Right leg over left leg 99.3 98.5 100.0 98.9 100.0
Elbows on knees 98.8 97.2 100.0 100.0 96.8
Left heel up 99.3 100.0 98.8 100.0 98.3
Right heel up 100.0 100.0 100.0 100.0 100.0
Both heels up 99.3 100.0 98.8 98.9 100.0
Both feet elevated 98.7 98.5 98.8 98.9 98.3
Average 99.3 99.1 99.5 99.6 98.8

Standing
Upright (normal) 98.7 100.0 97.7 98.9 98.3
Left foot on a step 100.0 100.0 100.0 100.0 100.0
Right foot on a step 99.7 99.2 100.0 99.5 100.0
Average 99.5 99.7 99.2 99.5 99.4

Reclining
Both feet on the ground 94.6 95.5 94.0 94.5 94.8
Left leg over right leg 98.3 98.7 98.0 98.1 98.5
Right leg over left leg 95.8 97.0 95.0 95.4 96.6
Average 96.2 97.1 95.7 96.0 96.6

Leaning
Left shoulder against wall 98.6 100.0 97.6 97.8 100.0
Right shoulder against wall 100.0 100.0 100.0 100.0 100.0
Two elbows on a counter 99.3 98.5 100.0 98.9 100.0
Average 99.3 99.5 99.2 98.9 100.0

Lying down
Facing up 100.0 100.0 100.0 100.0 100.0
On right shoulder 99.2 99.4 99.2 98.9 99.8
Facing down 99.3 100.0 98.8 98.9 100.0
On left shoulder 99.3 100.0 98.8 98.9 100.0
Average 99.5 99.9 99.2 99.2 99.9

Limb movement
Sit, move left leg 99.6 99.8 99.5 99.5 99.8
Sit, move right leg 100.0 100.0 100.0 100.0 100.0
Sit, move both legs 97.8 98.2 97.5 98.4 96.8
Stand, move left leg 98.9 100.0 98.0 100.0 97.0
Stand, move right leg 99.9 99.8 100.0 99.9 100.0
Average 99.2 99.6 99.0 99.6 98.4

Overall Average 99.0 99.2 98.9 99.0 98.9
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neous group of subjects. The trunk sensor has to be attached
on the sternum, preferably just below the sternal angle, that
is supposedly perpendicular to the vertical axis of the upper
body. This sensor represents the angle of the upper body in
relation to the four leg and foot sensors and the floor. Its
correct alignment is crucial for distinguishing between sit-
ting, reclining, and lying down. Obviously, the body shape
of male and female or lean and obese subjects varies con-
siderably in this location of the body. It is therefore difficult
to distinguish between the range of angle determined by
differences in body shape and the point at which one posture
changes into another (e.g., sitting to reclining). Optimiza-
tion of this sensor fixation and/or redefinition of the thresh-
old angles may improve these results.

Relatively lower rates of correct detection were also
found in the “gait” group. In this subset of PA, “jumping”
seems to be more difficult to identify (96.6%). We observed
that most of the errors were caused by incorrect identifica-
tion of jumping as “leg movement while standing.” This is
not too surprising given that every jump is initiated by a leg
movement. Further definition and validation of this type of
PA is needed. Despite a high rate of proper gait detection in
general (98.5%), the correct separation of climbing (98.2%)
or descending (98.5%) stairs was slightly lower than for
normal walking. This is because the first step on a stair is
very similar to a walking or running gait, making it partic-
ularly difficult to identify. Again, redefinition of threshold
angles used to distinguish a stair gait from a normal walking
gait would improve the rate of correct detection. The device
did accurately identify walking and running at a rate of
99.7% and 99.4%, respectively. Age and gender did not
affect the measurement accuracy, but BMI was a factor for
the measurement of running gait.

The major difference between IDEEA and existing de-
vices lies in its ability to intelligently integrate information
from multiple sensors and to provide direct results—the
type, frequency, duration, and intensity of PAs—that are
easier to understand and use. The most obvious shortcoming
of IDEEA is that it does not measure arm movements

directly. Although it detects locomotion well (such as walk-
ing or running), activities involving mainly arm motion,
such as rowing, swinging a ball or bat, operating a vacuum
cleaner, etc., would not be correctly identified. Whereas the
weight and size of existing devices make them difficult to
be placed on limbs or feet, the small size and weight of the
IDEEA sensors makes multiple placement possible, so this
limitation could be corrected by placing additional sensors
on the arms. The inconvenience of wearing multiple sensors
could be reduced by development of a wireless communi-
cation to the data collection device in the future.

Although the types of activities classified in this study
cannot represent complicated real-life situations, we tried to
identify the most common types of daily PAs, modeled
them one by one, and pieced them together to form more
meaningful activities such as walking, stair climbing, and
jumping. In actual conduct of the experiment, we provided
two test cases for each subject, with the same type of
activities but completely different sequences. The results
showed no difference; all had high accuracy. The prediction
of EE by IDEEA has not yet been validated, although a
large amount of research and modeling work has been done
using its unique ability to derive EE from the type and
particularly the intensity (e.g., the speed of walking, run-
ning, and step climbing) of activities measured. Future
studies will focus on improving the measurement of addi-
tional activities and determining the accuracy of extrapolat-
ing EE assessments from its measurements.

Although this study did not include tests of cycling,
uphill or downhill walking, or running, it did find that
IDEEA was able to accurately identify and quantify the
most common types of PAs observed in free-living humans.
Researchers have a long history of struggling for effective
assessment of duration, frequency, type, and intensity of
human daily PA (10,20–22). The results from our study
suggest that IDEEA is able to systematically classify and
measure the most common daily human PAs. The detailed
study of PA that IDEEA permits should prove to be useful
to many applications including: obesity, anorexia, move-

Table 3. Gait identification accuracy

Gait

Accuracy

Overall
(%)

Male
(%)

Female
(%)

BMI < 25 kg/m2

(%)
BMI > 25 kg/m2

(%)

Walking 99.7 99.5 99.9 99.5 99.9
Running 99.4 99.1 99.7 99.5 99.1
Climbing stairs 98.2 98.7 97.7 98.2 98.3
Descending stairs 98.5 99.2 97.6 98.8 98.0
Jumping 96.6 94.1 98.0 97.7 93.9
Average 98.5 98.1 98.6 98.7 97.8
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ment disorders, joint disease, rehabilitation, attention deficit
disorder, and neurological disorders. There are other poten-
tial applications including gait analysis, disturbances of
stance and body balance (e.g., caused by medication, sur-
gical treatments, or simply by aging), personal fitness eval-
uations, evaluation of workload and its duration, and fre-
quency and intensity of various types of jobs and training, as
well as performance analysis for amateur athletes and elite
professionals during their sports/exercises testing. IDEEA
could be used in a variety of settings including hospitals/
clinics, research institutes, fitness clubs, sports training, and
military training, as well as by individuals who are inter-
ested in personal fitness, body weight control, and general
well-being.
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